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Abstract
We discuss the case of a Markovian master equation for an open system, as it
is frequently found from environmental decoherence. We prove two theorems
for the evolution of the quantum state. The first one states that for a generic
initial state the corresponding Wigner function becomes strictly positive after a
finite time has elapsed. The second one states that also the P-function becomes
exactly positive after a decoherence time of the same order. Therefore, the
density matrix becomes exactly decomposable into a mixture of Gaussian
pointer states.

PACS numbers: 03.65Yz, 02.50.Ey, 03.65.Ta, 05.60.Gg, 42.50.−p

1. Introduction

The study of Markovian open systems is of general interest. One of the reasons is that
the coupling of open systems to their ubiquitous environment often leads to master equations
which are local in time [1]. The interaction of dust particles with air molecules or radiation, for
example, delocalizes any interference terms into correlations with the environmental degrees
of freedom on a short decoherence timescale. Thereafter, the dust particle can be perfectly
described by a Markovian master equation for its density matrix ρ̂(t):

dρ̂

dt
≡ Lρ̂ = − i

2m
[p̂2, ρ̂] − D

2
[x̂, [x̂, ρ̂]]. (1)

Such an equation results frequently from an interaction with the environment in cases where
friction is negligible [1]. The strength of the coupling is given by the parameter D. The first
term in (1) would lead to unitary spreading, whereas the second term would lead to nonunitary
localization. For a wavefunction of characteristic width σ , these effects act on timescales mσ 2

and 1/Dσ 2, respectively. Both effects are thus balanced for an ‘equilibrium width’, given
approximately by

σ0 = (Dm)−1/4 (2)
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see [1, 2]. The corresponding timescale is

t0 =
√
m/D (3)

and will set the timescale for decoherence.
The oldest way to elucidate a quantum state in terms of a pseudo-classical distribution

of phase-space variables  ≡ (x, p) is due to Wigner. Instead of the density matrix, one
discusses the Wigner function

W() ≡
∫ 〈
x − 1

2 r|ρ̂|x + 1
2 r
〉
eipr dr (4)

in order to study aspects of an open system [1]. Normalization holds with the choice
d = dp dx/2π of the phase-space volume element. The Wigner function W(; t)
corresponding to (1) satisfies the Fokker–Planck equation

dW

dt
= −p

m

∂W

∂x
+
D

2

∂2W

∂p2
. (5)

In a general situation, the Wigner function is negative in some regions of phase space. For
this reason it cannot be regarded as a probability distribution. If decoherence occurs, the
general expectation is that these negative parts are smoothed out in the course of time. Many
examples support this expectation. In section 2 of this paper we shall prove a much stronger
statement: after a certain decoherence time, the Wigner function becomes strictly positive.
This is very different from the behaviour of the density matrix whose nondiagonal terms
(describing interferences) become zero only asymptotically, i.e. they remain nonzero at any
finite time.

Through the process (1) or, equivalently, (5) the position basis is distinguished as the
preferred basis with respect to which no interferences can be observed and which remains a
robust basis in time. Such a classical basis is usually called the pointer basis. It is the basis
which remains most stable against the influence of an environment. How can the pointer basis
be determined? We have shown in [3] that this can be achieved by three different methods
which all lead to the same results. The first method invokes the principle of ‘Hilbert–Schmidt
robustness’ stating that the pointer states mimic the local nonunitary evolution as closely as
possible with respect to the Hilbert–Schmidt norm. A unique set of Gaussian pointer states
has thereby been found. The second method demands that the local production of entropy be
minimal (‘predictability sieve’). Again, this has led to a set of unique Gaussian pointer states
with practically the same width as the previous ones. The last method invokes quantum state
diffusion and leads again to Gaussian pointer states with the same width.

In section 3 we introduce the overcomplete set of Gaussian pointer states |〉. Then
we define additional phase-space distributions: the (generalized) Q- and P-functions are
related to the Wigner function by Gaussian coarse-grainings. In the discussion of the local
entropy production [3] we have already used the important fact that the density matrix can
be decomposed exactly into a mixture of Gaussian states after a finite decoherence time. In
section 4 of the present paper we shall prove this theorem—the positivity of the P-function—
which, in fact, holds for arbitrary initial states. The technical details are relegated to appendices
A, B and C.

2. Strict positivity of the Wigner function

We shall now consider the Wigner function, W(; t), of our open quantum system, obeying
equation (5). We shall prove the theorem that for any initial state, W will become positive
after a finite time tD , i.e.

W(; t) � 0 t � tD. (6)
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W can of course be positive even earlier; the theorem states that it cannot be negative later.
The Wigner function corresponding to a Gaussian wavefunction, for example, stays positive
for all times. In fact, as shown for example in [4], Gaussian states are the only pure states
that lead to a positive Wigner function. It must, however, be emphasized that the positivity is
only a necessary requirement for classicality, not a sufficient one. Squeezed Gaussian states of
harmonic oscillators, for example, are genuine nonclassical states, but correspond to a positive
Wigner function.

Since Fokker–Planck equations such as (5) preserve the positivity of distribution functions,
one might guess that the set of positive solutions attracts the indefinite ones, so that any
indefinite distribution becomes positive in the course of time. This is, however, not true.
Equation (5) is a linear equation. Since it also allows solutions that remain negative, the
superposition principle will allow indefinite solutions at all times.

The proof, therefore, has to rely on specific properties of the Wigner function. It is known
thatW possesses, in fact, very special features, see e.g. [5]. For example, it obeys |W | � 1/π .
Moreover, its negative parts are always restricted to small regions in phase space.

To be concrete, in our proof we shall make use of two properties for the Wigner function.
The first one exploits its connection with the Q-function (see e.g. [5]). Introducing the
normalized Gaussian

g(;C) = 1

C
exp

[
−x2 + p2

2C

]
(7)

its convolution with the Wigner function, g � W , is always positive provided C � 1/2 (and
may be indefinite otherwise). In the marginal case C = 1/2 this convolution gives the
Q-function which yields the probability distribution for finding the coherent states in the
density operator ρ̂, and is therefore manifestly positive [5]. This is why the negative regions
of W are so restricted: the convolution of W with the Gaussian g(; 1/2) would not yield a
positive function if W contained negative regions that are spread out over regions with areas
much bigger than about 1/2. Since the case C > 1/2 represents a stronger coarse-graining of
W than C = 1/2, it is clear that this positivity remains true.

The second property of the Wigner function, which will serve as an ingredient in our
proof, is its invariance under linear canonical transformations. To be precise, if we make such
a transformation for both the quantum operators and the classical canonical variables, one has

(x̂, p̂) → (x̂ ′, p̂′) ⇒ W(x, p) → W ′(x ′, p′) = W(x, p). (8)

This feature is not obvious from the usual expressions defining W . There exists, however, an
alternative equivalent form given by [6]:

W(x, p) = tr[ρ̂{δ(x − x̂)δ(p − p̂)}sym] (9)

where we refer to a simple symmetrization process regarding the order of x̂ and p̂:

{̂Ô }sym ≡ 1
2 (̂Ô + Ô̂) for ̂ = (x̂, p̂) and for all Ô. (10)

This ordering is explicitely invariant for linear canonical transformations. The invariance of the
Wigner function follows immediately. Note, however, that the coarse-graining is not invariant
and coarse-grained Wigner functions, Q-functions in particular, will be non-invariant even for
linear canonical transformations. In the simple case of the transformation x̂ ′ = ax̂, p̂′ = a−1p̂,
and assuming a pure state with wavefunction ψ(x), the invariance can be seen directly from
the standard integral expression. Using

ψ ′(x ′) = 1√
a
ψ

(
x ′

a

)
(11)
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one has

W ′(x ′, p′) = 1

π

∫
dy ′ exp(2ip′y ′)ψ∗′

(x ′ + y ′)ψ ′(x ′ − y ′) (12)

where W ′ denotes the Wigner function with respect to the same state in the transformed basis,
and therefore

W ′(x ′, p′) = W(x, p). (13)

Using this invariance, one can extend the previous coarse-graining (7) to general Gaussians
with correlation matrix C:

g(; C) = |C|− 1
2 exp

[
−T 1

2C


]
(14)

( and T stand for column and row vectors, respectively). Application of a linear canonical
transformation to the convolution g � W rendering C = √|C|I then demonstrates that the
sufficient and necessary condition for the positivity of the coarse-grained Wigner function
reads

g(; C) � W() � 0 iff |C| � 1/4. (15)

With this lemma, the proof of the theorem (6) becomes straightforward. The Fokker–
Planck equation (5) imposes a progressive Gaussian coarse-graining (14) on the initial Wigner
function:

W(; t) = g(; CW(t)) � W(x − pt/m,p; 0) (16)

where the time-dependent correlation matrix of the coarse-graining is

CW(t) = Dt

(
t2/3m2 t/2m
t/2m 1

)
(17)

as can be found from equations (5), (14) and (16). The determinant yields

|CW(t)| = D2t4

12m2
. (18)

It follows from condition (15) that the Wigner function is indeed positive for

t

t0
� 31/4 ≈ 1.32 (19)

which is of the same order as the decoherence timescale of section 1. This completes our
proof.

We would like to mention that, based on more complicated mathematics [7], lemma (15)
has been stated earlier [8]. Similarly to the spirit of [10] and the present paper, it was also
suggested in [7, 8] that particular quantum features of open systems would disappear after an
estimated finite time.

3. Pointer states, Q- and P-functions

We are going to consider the overcomplete set of normalized pure Gaussian pointer states |〉
obeying ∫

|〉〈| d = Î . (20)
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In appendix A we discuss the position representation of these states. The overlap of two
pointer states is a Gaussian:

|〈|′〉|2 = exp

[
−( − ′)T

1

4C1/4
( − ′)

]
. (21)

The matrix C1/4 is positive and has determinant 1/4. This value for the determinant makes the
above Gaussian normalized and assures the consistency of the completeness relation (20) with
the normalization of the pointer states. In fact, C1/4 can be directly identified as the matrix of
quantum uncertainties of the canonical pair of operators in the Gaussian pointer states, cf (34)
in appendix A. We can calculate C1/4 for simplicity in the fiducial state | = (0, 0)〉 ≡ |0〉:

C1/4 ≡ 〈0|̂̂T + h.c.|0〉. (22)

Given the above overcomplete set of Gaussian states, one can introduce the generalized
Q- and P-functions, related to the density operator respectively by

Q() = 〈|ρ̂〈〉 (23)

and

ρ̂ =
∫

P()|〉〈| d. (24)

The Q-function is the probability distribution of the value . In a generalized quantum
measurement it can be inferred from the positive operator valued measure (see e.g. [9])
formed by |〉〈| d. The P-function has a different meaning. When we expand the density
matrix as a sum of the pointer states, the weighting function is called the P-function. While the
Q-function is non-negative by construction, the P-function may be indefinite (even ill-defined)
for generic states. The Q- and P-functions are related to the Wigner function by the same
Gaussian coarse-graining but in opposite senses [5]:

W() = g(; C1/4) ∗ P() (25)

Q() = g(; C1/4) ∗W(). (26)

The correlation matrix C1/4 of coarse-grainings is the one that appeared earlier as the matrix of
canonical quantum uncertainties in the Gaussian pointer states, see (22). All sets of Gaussian
pure pointer states are classified in appendix A. Details of derivations for (25), (26) are given
in appendix B.

The Q-function satisfies a Fokker–Planck equation which is, according to (26), the coarse-
grained version of the Fokker–Planck equation (5) for the Wigner function. For the evolution
equation of the P-function we are going to present a more direct derivation in appendix C.

4. Strict positivity of the P-function

In section 3 we have expanded the density operator as a weighted sum of Gaussian pointer
states, see (24). The weight function is called the P-function and it is indefinite for a generic
quantum state ρ̂(0). We shall now prove that, due to the open system dynamics (1), the
P-function becomes exactly positive,

P(; t) � 0 t � t ′D. (27)

The density operator ρ̂(t) can thus be decomposed exactly into a statistical mixture of Gaussian
pointer states |〉 (see (32) below) after a finite decoherence time t ′D has elapsed. We have
already emphasized that this holds for a generic ρ̂(0) (not necessarily Gaussian). This theorem
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generalizes the corresponding statement made in [10] for a single choice of Gaussian pointer
states (i.e. of C1/4) as well as the asymptotic statements proved in [11, 12].

The proof will be reduced to lemma (15) used in the proof of the positivity of the Wigner
function, see (6) in section 2. Consider solution (16) for the Wigner function and substitute
expression (25) into its left-hand side. As for the right-hand side, assume that enough time
has elapsed so that CW(t)− C1/4 is a non-negative matrix. Then the convolution factorizes as

g(; CW(t)) = g(; C1/4) ∗ g(; CW(t) − C1/4) (28)

and can be substituted into (16). We obtain

g(; C1/4) � P (; t) = g(; C1/4) � g(; CW(t) − C1/4) � W(x − pt/m,p; 0). (29)

The identical convolutions on both sides cancel each other and leave us with the explicit
solution for the P-function as the coarse-grained Wigner function. The lemma (15) tells us
that a generic initial P-function becomes non-negative after a time t,

P(; t) � 0 iff |CW(t) − C1/4| � 1/4. (30)

Calculating the determinant from (17) and (36) below, this condition leads to a cubic equation
for t, yielding the numeric estimate

t

t0
� 1.97. (31)

As expected, therefore, the decoherence timescale t ′D coincides approximately with t0. This
completes the proof.

One might wonder how much of our results do depend on our particular Markovian master
equation (1). We expect that our proofs of positivity can be extended to all master equations
of this kind which are at most quadratic in position and momentum, e.g. for the damped
harmonic oscillator. As far as corrections to the Markovian approximation are concerned, we
do not expect that they render our results—exact positivity of Wigner and P-functions after a
finite time—obsolete; because of their exponential smallness they should not spoil an exact
positivity. Our results should thus be stable with respect to post-Markovian corrections, but
a formal proof would go beyond the scope of this paper. We hope to return to these issues
elsewhere.
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Appendix A. Classes of Gaussian pointer states

We choose the following form for the wavefunctions 〈q|〉 of pure Gaussian pointer states
|〉:

ψ(q) = (αR/2π)1/4 exp(−α(q − x)2/4 + ip(q − x)). (32)

This is the most general form of a normalized Gaussian wave packet shifted and boosted
uniformly from the fiducial state with ψ0(q) with  = (0, 0),

ψ0(q) = (αR/2π)1/4 exp(−αq2/4). (33)

The correlation matrix C1/4, defined in (22), takes the following form:

〈0|
(

x̂2 (x̂p̂ + h.c.)/2
(x̂p̂ + h.c.)/2 p̂2

)
|0〉 = 1

αR

(
1 −αI/2

−αI/2 |α|2/4

)
. (34)
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Indeed, its determinant is 1/4 for all α. In [3] we have found a distinguished value of the
complex parameter α for the class of robust pointer states, given by

α0 ≡ αR + iαI = (1 − i)
√

2Dm. (35)

For this value (34) gives

C1/4 =
(
σ 2

0 /
√

2 1/2

1/2 σ−2
0 /

√
2

)
. (36)

This is being used in the proof for the positivity of the P-function, equation (30). The proof
can be performed for any α (it always leads to a cubic equation), but the basic object is the
matrix C1/4 with determinant 1/4.

It is worthwhile to add the following. Let us assume that we had constructed no pointer
states first. Instead, assume that we had taken an arbitrary real positive matrix of determinant
1/4 to perform a coarse-graining on the Wigner function such as in (26). This matrix would
then define a complex parameter α as on the right-hand side of (34), and we would be able
to construct a unique overcomplete set of Gaussian wavefunctions (32) whose C1/4-matrix
is just our chosen one. Thus it would turn out that our coarse-grained Wigner function was
just the corresponding Q-function which is always positive. In this way we have obtained an
alternative proof of theorem (6) of section 2.

Appendix B. Symplectic Fourier transform

This appendix is devoted to the proofs of (25) and (26). To facilitate the mathematical
derivations we use the Fourier representation. For instance, the Fourier-transformed Wigner
function reads

W̃ (̃) =
∫

W() exp[−ĩT ] d (37)

where ̃ = (p̃,−x̃). We use the symplectic product ̃T  = p̃x − x̃p of the original and
the Fourier-transformed variables in (37). In the Fourier representation, the coarse-graining
relations (25), (26) reduce to algebraic relations:

W̃ (̃) = exp
[− 1

2 ̃
T C1/4̃

]
P̃ (̃) (38)

Q̃(̃) = exp
[− 1

2 ̃
T C1/4̃

]
W̃ (). (39)

We are going to prove the first relationship (the second one can easily be proved along
the same lines). From (4) and (37) we obtain

W̃ (̃) =
∫

eip̃x 〈x + 1
2 x̃ |ρ̂| x − 1

2 x̃
〉

dx. (40)

Substituting the P-function expansion (24) of ρ̂ on the right-hand side yields

W̃ (̃) =
∫

e−ip̃x
〈
x + 1

2 x̃|′〉〈′|x − 1
2 x̃
〉
P(′) d′. (41)

Invoking the expression (32) of the pointer state wavefunctions we can perform the above
integral, yielding

W̃ (̃) = exp

[
−αRx̃

2

8
− 1

2αR

(
p̃ − 1

2
αI x̃

)2
]
P̃ (̃). (42)

The quadratic form in the above exponent can be written as − 1
2 ̃

T C1/4̃. This completes the
proof.
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Appendix C. ‘Fokker–Planck’ equation for the P-function

In this part we return to the notation of our recent paper [3] and derive directly the evolution
equation for the P-function. We introduce the projectors on the states ψ(q) ≡ 〈q|〉,
P̂ () = |〉〈|. We also denote the P-function P(; t) of the open system by f (; t).
Application of (1) to (24) yields

d

dt
ρ̂ =

∫
f (; t)LP̂ () d =

∫
ḟ (; t)P̂ () d. (43)

To derive from this the equation for f , we first observe that the action of L on P̂ () in
coordinate representation yields

〈q|LP̂ |q ′〉 = i

2m

{
−iαI − ip[α∗(q ′ − x) + α(q − x)] −

(
α∗

2

)2

(q ′ − x)2

+
(α

2

)2
(q − x)2

}
〈q|P̂ |q ′〉 − D

2
(q − q ′)2〈q|P̂ |q ′〉. (44)

Using (32) in the identity 〈q|P̂ ()|q ′〉 = ψ(q)ψ
∗
(q

′), the above action can be expressed
as an operator containing derivative terms in x and p, acting on P̂ . After partial integration in
(43) one then finds the following equation for f :

df (; t)
dt

= −p

m
∂xf (; t) +

1

2

[
Dpp∂

2
pp + Dxx∂

2
xx + 2Dpx∂

2
px

]
f (; t) (45)

where the elements of the diffusion matrix are given by

D ≡
(
Dxx Dxp

Dpx Dpp

)
=
(−αI/mαR |α|2/4mαR

|α|2/4mαR D

)
. (46)

Equation (45) can be interpreted as a Fokker–Planck equation forf(, t) provided the diffusion
matrix D is non-negative. As usual, the first term in (45) will then describe a drift according
to the free-particle dynamics, while the second term will describe a diffusion of the state of
the system over the pointer states P̂ (). In [3] we have implemented the principle of minimal
local entropy production by minimizing the width of the Gaussian pointer states. This leads
to a value for α of the order of (35). We have shown that the relation C = Dt20

/
2 holds for

the distinguished value (35) of α.
To find a formal solution of (45), we use the Fourier representation f̃ (̃; t). Equation

(45) then leads to the following evolution equation for the Fourier components:

df̃ (̃; t)
dt

= − p̃

m
∂x̃f̃ (̃; t)− 1

2
[̃T D̃]f̃ (̃; t). (47)

The solution assumes the form

f̃ (̃; t) = exp

[
− t

2
̃T D(t)̃

]
f̃ (x̃ − p̃t/m, p̃; 0). (48)

By substitution into (47) one obtains explicitly the matrix of time-dependent coefficients3

D(t) =
(
Dxx + Dxpt/m + Dppt

2/3m2 Dxp + Dppt/2m
Dxp + Dppt/2m Dpp

)
. (49)

3 Our matrix D(t) corresponds to the matrix G(t) in [3]. Equation (17) there has misprints: the signs of the terms
Dppt/2m must be reversed.
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This matrix becomes more and more positive for t > 0 provided D ≡ D(0)was chosen positive.
One obtains the solution of the evolution equation (45) by the inverse Fourier-transform of
expression (48). It takes the form of the convolution

f (; t) = g(; tD(t)) ∗ f (x − pt/m,p; 0). (50)

The solution, therefore, emerges as the progressive time-dependent Gaussian coarse-graining
of the free kinematic evolution. Note the close similarity of this equation with the time
evolution (16) for the Wigner function.
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